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1 Gaze-independent visual oddball interface

Eye motor disability

The BCI target population suffers from
eye motor disabilities, warranting the
development of gaze-independent
communication paradigms. While
other active BCI modalities (auditory,
somatosensory, ...) can work, visual
paradigms exploiting spatial attention
often yield the highest ITR [3]. We aim
to design a visual oddball interface
that can be operated efficiently by
gaze-impaired patients through accu-
rate covert attention classification.
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Conventional visual attention settings

Overt attention

Persons with full eye motor control
can gaze at intended targets.

Covert attention

Fixating the gaze at the center is a
common solution, but this also re-
quires a degree of eye motor control.

Proposed visual attention setting

Split attention

We design an interface that allows
for the split attention conditions that
can occurr in patients with involun-
tary eye movements.

Experimental protocol
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2 Novel ERP latency estimation procedure

The jitter problem

Latency jitter correction improves covert attention decoding performance [1].
High jitter decreases SNRwhen averaging overmultiple trials. In order to cor-
rect for jitter, an algorithmmust accurately estimate single-trial ERP latencies.
Classifier-based latency estimation [2], paired with a time-regularized linear
classifier [4] is a technique that can be used classify jittered signals and extract
latencies. We propose a more accurate latency estimation and classification
algorithm that iteratively applies classifier-based latency estimation.

Woody Classifier-Based Latency Estimation (wCBLE)
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3 Improvement in covert attention decoding

Preprocessing

1. Band-pass filter between 0.5 and 32Hz
2. Resample to 64Hz
3. ICA eye artifact rejection
4. Remove bad trials according to eye-tracker
5. Subtract non-target average

Single trial classification performance
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While covert attention decoding performance is significantly improved, there
is a significant decrease in overt attention performance. This is probably due
to the high contribution of early visual ERP components in overt attention,
which are destroyed by the alignment procedure. No significant effect is
observed for split attention decoding. Future work will investigate a multi-
component approach.
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